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Test of steady-state fluctuation theorem in turbulent Rayleigh-Bénard convection
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The local entropy production rate of(r,?) in turbulent thermal convection is obtained from simultaneous
velocity and temperature measurements in an aspect-ratio-one cell filled with water. The statistical properties of
the time-averaged o(r,7) are analyzed and the results are compared with the predictions of the steady-state
fluctuation theorem (SSFT) of Gallavotti and Cohen. The experiment reveals that the SSFT can indeed be
extended to the local variables, but further development is needed in order to incorporate the common dynamic
complexities of far-from-equilibrium systems into the theory.
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While much is known about fluctuations at equilibrium,
our current understanding of fluctuations in systems far from
equilibrium is rather limited [1]. Large nonequilibrium fluc-
tuations may occur in macroscopic systems subject to an
external driving force or in microscopic systems, such as
nanoscale devices and biomolecules including DNA and pro-
teins, in contact with a thermal bath of temperature 7. For
such small systems with relevant energies comparable to the
thermal energy kT, one often observes large deviations from
the average behavior. Recently, a set of closely related fluc-
tuation theorems [2] were proposed to describe nonequilib-
rium fluctuations of the time-averaged entropy production
rate o, =(1/7)[1""a(¢')dt'. While the range of applicability
and the statistical mechanical ensembles used differ, these
theorems have the same general form
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where +0 and —o are equal but opposite values of o, and
P(+0) and P(-o) are the corresponding probability density
functions. The fluctuation theorems (FTs) were originally de-
rived for global variables and later it was conjectured [2,3]
that FTs may also apply to the time-averaged local entropy
production rate o (r)=(1/7)[""o(r,t")dt'.

In this Rapid Communication, we report an experimental
study on fluctuations of local heat transport in a far-from-
equilibrium system of turbulent Rayleigh-Bénard convec-
tion, in which one applies a vertical temperature difference
AT across a horizontal layer of fluid of thickness H, so that
heat is transferred vertically from the lower warm surface to
the upper cold surface. When the Rayleigh number Ra
[=agATH?/(vk), where g is the gravitational acceleration,
and «, v, and « are, respectively, the thermal expansion co-
efficient, the kinematic viscosity, and the thermal diffusivity
of the fluid] is large enough (Ra=10®), the bulk fluid be-
comes turbulent and heat is transported predominantly by
convection [4,5]. In the experiment, we simultaneously mea-
sure the local velocity v(r,7) and the local temperature
T(r,t), from which we obtain the local convective heat flux
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where 6T(r,?) is defined as STy(r,7)=T(r,1)—T, with T
being the mean temperature of the bulk fluid. In Eq. (2),
j(r,r) has been normalized by the conductive heat flux j,
=kAT/H, where k is the thermal conductivity of the fluid.
The measured vertical heat flux j.(r,?) is directly related to
o(r,?) through the equation [7] o(r,t)=wj.j.(r,0)V.(1/T),
where v, is a small volume over which the local velocity and
temperature measurements are averaged, and V_(1/7) is the
thermodynamic force (in the z direction) that drives j,(r,?).
To test the steady-state FT (SSFT) of Gallavotti and Cohen
[8] for the local variables, we compute a running average of
Jr,t) and  obtain the time series J/r,7)
=(1/7)[77j.(r,t")dt’. With J(r,7) being identified as the
fluctuating variable of interest, Eq. (1) becomes
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where v/ V.(1/T)/kg is a numerical factor to be determined
below.

In addition to the experimental studies of the SSFT for
global variables [9], several experiments have been carried
out to test the applicability of the SSFT to local variables,
including fluctuations of the power injection required for
sustaining the dynamics in a vertically agitated granular gas
[10], temperature fluctuations in turbulent convection [11],
and fluctuations of the force exerted on a small sensor plate
placed in a turbulent flow between two counterrotating disks
and in a wind tunnel [12]. These experiments provided im-
portant insights into the nature of nonequilibrium fluctua-
tions but also revealed some uncertainties involved in testing
the SSFT. For example, the experiments by Ciliberto ef al.
concerned the temperature and force fluctuations to which
the SSFT does not apply. As shown in Eq. (2), j.(r,7) con-
tains a fluctuating velocity factor and thus obeys different
statistics from that of ST [6]. The measured force is an
integral of the local pressure over the sensor plate, which
bears no direct relation with o(r,?). Feitosa and Menon have
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pointed out [10] that the conditions of time reversibility or
detailed balance essential for the proof of the SSFT do not
apply to the granular flows. Clearly, direct measurements of
o(r,t) are needed in order to further explore the applicability
of the SSFT to a variety of far-from-equilibrium systems,
whose governing equations of motion satisfy the conditions
required by the SSFT.

Our experiment is conducted in an upright cylindrical cell
filled with water. The aspect ratio of the cell is unity and the
cell height is H=20.5 cm. Details about the apparatus and
the experimental method have been described elsewhere [6],
and here we mention only some key points. Local velocity
measurements are performed using a laser Doppler velocim-
etry (LDV) system [13], which can simultaneously measure
two components of v(r,7). Temperature measurements are
simultaneously taken using a multichannel LDV interface
module for synchronization of the data acquisition. A small
movable thermistor of 0.2 mm diam, 15 ms response time,
and 20 mK/{) temperature sensitivity is used to measure
T(r,t). The sampling rate of the measurements is 10— 15 Hz,
which is 3-10 times (depending on the value of Ra) larger
than the cutoff frequency of the velocity power spectrum.
Typically, we take seven hour-long time series data (~5
X 10° data points) at each location, ensuring that the statis-
tical average of the flow properties is adequate. The measure-
ments of v(r,7) and T(r,f) are conducted with varying Ra
and spatial positions across the entire cell. The mean tem-
perature of the bulk fluid is kept at 7,=30 °C and thus the
Prandtl number is fixed at Pr=v/xk=5.4.

In a recent experiment [6] we showed that the local heat
transport in turbulent convection over the parameter range
studied here is carried out primarily by thermal plumes,
which erupt irregularly from the upper and lower thermal
boundary layers. The thermal plumes organize themselves in
the closed cell in such a way that the rising warm plumes
accumulate on one side of the cell and the falling cold
plumes concentrate on the opposite side of the cell. The spa-
tial separation of warm and cold plumes and the resulting
large-scale circulation provide a fast channel along the cell
periphery for the transport of heat. Here we focus on the
statistical properties of the measured j_(r,?) at the midheight
of the cell and 9 mm away from the sidewall. This is the
plume-dominated sidewall region, in which the measured
horizontal profile of the mean vertical heat flux reaches
maximum [6].

Figure 1(a) shows the measured histograms of the vertical
flux P(j,) (triangles) and horizontal flux P(j,) (circles). It is
seen that fluctuations of the horizontal flux j, are symmetric
and their mean value is approximately zero. Fluctuations of
the vertical flux j,, on the other hand, are highly asymmetric
with positive fluctuations being much larger than negative
ones. In calculating j.(r,), we have used the convention that
warm fluctuations (87,>0) produce positive flux if their ve-
locities are in the upward direction (v,>0). With this defi-
nition, both the rising warm plumes and the falling cold
plumes contribute to a positive flux. From Fig. 1(a) and the
recent temperature-velocity cross-correlation measurements
[6], we conclude that the measured j, contains both the cor-
related (active) and uncorrelated (passive) fluctuations. The
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FIG. 1. (a) Comparison between the vertical flux histogram
P(j.) (triangles) and the horizontal flux histogram P(j,) (circles).
(b) Histograms P(J,) for 7=0,0.5,1,2,4,8 s. The vertical dashed
line indicates the mean value of J,. All measurements are made near
the sidewall at Ra=3.6 % 10°.

negative fluctuations together with their symmetric counter-
part of small positive fluctuations are produced by uncorre-
lated temperature and velocity signals. These fluctuations are
approximately the same as those in the horizontal direction
and do not contribute to the local heat transport. The corre-
lated temperature and velocity signals are generated by the
thermal plumes and produce large positive fluctuations of j,
which give rise to a large mean value of the vertical heat
flux. Put in other words, the large positive fluctuations in j,
are generated by buoyancy, which drives convective turbu-
lence. Small negative fluctuations in j, are produced by tur-
bulent background and they are not necessarily against grav-
ity. Figure 1(a) shows that some rare fluctuations produced
by the energetic plumes (or plume clusters) can carry an
instantaneous heat flux as large as 2000. This value is more
than 20 times larger than the average heating flux (=90) at
this Ra.

Figure 1(b) shows the histograms P(J,) of the obtained
J(r,1) for six different values of 7. The shape of the ob-
tained P(J,) is highly non-Gaussian and changes continu-
ously with increasing 7. The most probable value of J (the
peak position), however, remains unchanged (=0). The ver-
tical dashed line in Fig. 1(b) indicates the mean value of J,
which does not change with 7 and is equal to the mean value
of j,. As the averaging time 7 increases, the distribution
width of P(J,) becomes narrower. This is especially evident
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FIG. 2. Plots of In[P(J,)/P(=J,)] as a function of J, at Ra
=3.6 X 10° for 7=0,1,2,4,8,16 s. The solid lines are the linear fits
to the corresponding data points.

for the negative tail part of P(J,), which determines the
range of J, over which In[P(J,)/P(-J,)] can be plotted. By
comparing the time series J(r,7) with j.(r,7), we find that
the main effect of the time average is to filter out the fast
uncorrelated fluctuations in j.(r,7). As mentioned above,
these uncorrelated fluctuations are produced mainly by the
turbulent background and their probability distribution is
symmetric. The large positive fluctuations in j,(r,7) are pro-
duced by the thermal plumes. They are slow and thus remain
in J(r,?).

Figure 2 shows the plots of In[ P(J,)/ P(-J,)] as a function
of J, for six different values of 7. All the plots of
In[P(J,)/P(-J,)] are linear functions of J_ with zero inter-
cept, indicating that P(J,)/P(-J,) is indeed an exponential
function of J, as predicted by Eq. (3). Figure 2 also reveals
that the slope a(7) of the linear fits (solid lines) increases
with 7.

Figure 3 shows the plots of In[ P(J,)/ P(-J,)] as a function
of J . for five different values of Ra studied in the experiment.
Plots of In[P(J,)/P(-J,)] obtained at different values of Ra
are all linear functions of J_ (solid lines) and the slope a(7) at
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FIG. 3. Plots of In[P(J,)/P(-J,)] as a function of J,. with 7
=4 5. The measurements are made at Ra=1.8 X 10° (circles), 2.6
X 10° (up triangles), 3.6X 10° (diamonds), 4.8 X 10° (down tri-
angles), and 6.0 X 10° (squares). The solid lines show the linear fits
to the corresponding data points.
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FIG. 4. Obtained slope a(7) as a function of 7 for Ra=1.8
% 10° (circles), 2.6 X 10° (up triangles), 3.6 X 10° (diamonds), 4.8
X 10° (down triangles), and 6.0 X 10° (squares). The solid lines are
the linear fits to the corresponding data points.

a fixed value of 7 (=4 s) decreases with increasing Ra. Fig-
ure 3 thus suggests that P(J,)/P(-J,) obtained in the Ra
range studied here has a common exponential form,
expla(n)J,].

Figure 4 shows the 7dependence of the slope a(7) for five
different values of Ra studied in the experiment. The ob-
tained «a(7) for different values of Ra can all be fitted to a
linear function a(7)=a7+b (solid lines). The fitted values of
a and b are given in Table I. The nonzero value of b can be
thought as a correction to Eq. (3) for finite values of 7, be-
cause the exponential function in Eq. (3) is an asymptotic
form at 7— oo, In fact, the value of b is directly related to the
asymmetry of the measured P(j,) shown in Fig. 1(a). This
asymmetry is produced by the constant heating flux (or A7)
applied to keep the system at steady state. If P(j,) is a shifted
Gaussian with a nonzero mean or an asymmetric exponential
decaying function, one can show that b~ (j,)/ yg, where (j,)
is the local average value of j, and v, is its rms value. For
symmetric distribution functions, one has (j,)=0 and thus
b=0. Note that the measured P(j,)/P(-j.) at 7=0 still has
the exponential form.

The predicted exponential form for the probability ratio
P(+x)/P(-x) was also observed for other fluctuating quanti-
ties in turbulent flows [11,12] and in granular flows, in which
the conditions essential for the proof of the SSFT do not
occur [10]. This fact suggests that the functional form of
P(+x)/P(=x) alone is not a sensitive test of the SSFT. Be-

TABLE I. Fitted values of a and b from the slope a(7)=at+b
obtained near the sidewall at different Ra. The numbers in the pa-
rentheses are obtained at the cell center.

Ra a b

units of (10°) (1073571 units of (1072
1.8 3.4 (10.8) 2.3 (4.2)
2.6 2.9 (7.7) 1.4 (3.1)
3.6 2.9 (8.2) 1.1 (2.5)
4.8 2.8 (8.1) 1.1 2.4)
6.0 2.7 (6.8) 1.0 (2.2)
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sides the functional form, the SSFT also gives a unique ar-
gument for the exponential function without any adjustable
parameter. With the accurate determination of all the numeri-
cal factors involved in the experiment, one can test the SSFT
more stringently. According to Eq. (3), we have a
=1/ V.(1/T)/kg. As mentioned above, the thermal plumes
that carry the local heat flux in turbulent convection are gen-
erated near the thermal boundary layers, in which the tem-
perature gradient (and hence the thermodynamic driving
force) is concentrated. The bulk fluid, on the other hand,
remains isothermal on average, and temperature fluctuations
in the region are not the driving force for the thermal plumes.
Therefore, we have V. (1/7)=AT/ (2)\T(2)) and thus a
=1y0.Nu. Here \ is the thermal boundary layer thickness, T
is the bulk fluid temperature, Nu=H/(2\) is the Nusselt
number (normalized total heat flux), and o,=j AT/ (kzT5H)
is an equivalent entropy production rate for conduction. At
Ra=3.6X10°, we have AT=17.1 K, Ty=303 K, Nu=90,
w=1mm’, k=0.615W/Km and thus o,=34
X 10" cm® s7! and a=3 X 10'* s~!. The calculated value of
a is 10'7 times larger than the fitted value.

The above results suggest that the SSFT can indeed be
extended to the local variables, but there are several impor-
tant issues remained to be further clarified. First, to balance
Eq. (3) one needs to introduce an effective temperature T,
=3.2X10%T, or an energy scale kgT,;=10"'2J. This en-
ergy is comparable to the turbulent kinetic energy E;
=(1/2)p\*v?, ., where p=1 g/cm? is the fluid density, v,
=0.4 cm/s [13] is the rms velocity, and A=0.8 mm [6] is
the smallest length scale in turbulent convection. In fact, the
dynamic equations for turbulent convection are independent
of Ty (except that some fluid parameters may vary with T}).
A proper definition of T, in terms of measurable dynamic
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variables is needed for systems far from equilibrium
[9,10,14]. Without such a definition, Eq. (1) will not remain
free of adjustable parameters as it appears to be. Second, we
find that the fitted value of a changes with the spatial posi-
tion in the convection cell. As shown in Table I, the value of
a obtained at the cell center is ~2.8 times larger than that
near the sidewall. This is caused by the nonuniform distribu-
tion of thermal plumes in the closed cell. In fact, large-scale
coherent structures are often found in systems far from equi-
librium and they have a profound influence on fluctuations of
the local variables [1,4,5].

In summary, the experiment clearly reveals that the prob-
ability ratio P(+J,)/P(-J,) in turbulent thermal convection
has a common exponential form exp[aJ/,7], as predicted by
the SSFT. Systematic measurements of the local entropy pro-
duction rate o(r,7) over varying Ra and spatial positions in
the cell show that fluctuations of the time-averaged o(r,?)
are neither isotropic nor homogeneous. The amplitude of the
fluctuations is determined by an energy scale much larger
than kzT but comparable to the turbulent kinetic energy at
the smallest length scale of the convective flow. How to in-
corporate these common dynamic complexities into the
SSFT for the local variables is certainly a challenge for
theory. Our results together with the early measurements
[10-12] suggest that the SSFT may be further extended to
include other fluctuating variables in turbulent flows and in
granular flows.
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